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Abstract
We discuss the Schrödinger equation in the presence of quaternionic potentials.
The study is performed analytically as long as it proves possible, when not,
we resort to numerical calculations. The results obtained could be useful to
investigate an underlying quaternionic quantum dynamics in particle physics.
Experimental tests and proposals to observe quaternionic quantum effects by
neutron interferometry are briefly reviewed.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ta, 02.30.Jr, 02.30.Tb

1. Introduction

After the classical mathematical and physical works on foundations of quaternionic quantum
mechanics [1–4], there has been, in recent years, a wide interest in formulating quantum
theories by using the non-commutative ring of quaternions [5–12]. Some of the main results
emerging from the use of new algebraic structures in particle physics are reviewed in the books
of Dixon [13] and Gürsey and Tze [14]. For a detailed discussion of quaternionic quantum
mechanics and field theory we refer to the excellent book of Adler [15].

The present paper has grown from an attempt to understand the experimental proposals
[16–18] and theoretical discussions [19–21] underlying the quaternionic formulation of the
Schrödinger equation. The main difficulty in obtaining quaternionic solutions of a physical
problem is due to the fact that, in general, the standard mathematical methods of resolution
break down. In recent years, some of these problems have been overcome. In particular, the
discussion of quaternionic eigenvalue equations [22] and differential operators [23] is now
recognized as quite satisfactory. On the other hand, physical interpretations of quaternionic
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solutions represent a more delicate question [15]. In discussing the Schrödinger equation
what is still lacking is an understanding of the role that quaternionic potentials could play in
quantum mechanics and where deviations from the standard theory would appear.

The earliest experimental proposals to test quaternionic deviations from complex quantum
mechanics were made by Peres [16] who suggested that the non-commutativity of quaternionic
phases could be observed in Bragg scattering by crystals made of three different atoms, in
neutron interferometry and in meson regeneration. In 1984, the neutron interferometric
experiment was realized by Kaiser et al [17]. The neutron wavefunction traversing slabs
of two dissimilar materials (titanium and aluminium) should experience non-commutativity
of the phase shifts when the order in which the barriers are traversed is reversed. The
experimental result showed that the phase shifts commute to better than one part in 3 × 104.
To explain this null result, Klein postulated [18] that quaternionic potentials act only for some
of the fundamental forces and proposed an experiment for testing possible violations of the
Schrödinger equation by permuting the order in which nuclear, magnetic and gravitational
potentials act on neutrons in an interferometer.

The first theoretical analysis of two quaternionic potential barriers was developed by
Davies and McKellar [21]. In their paper, by translating the quaternionic Schrödinger equation
into a pair of coupled complex equations and solving the corresponding complex system
by numerical methods, Davies and McKellar showed that, notwithstanding the presence of
complex instead of quaternionic phases, the predictions of quaternionic quantum mechanics
differ from those of the usual theory. In particular, they pointed out that in contrast to the
complex quantum mechanics prediction, where the left and right transmission amplitudes, tL
and tR , are equal in magnitude and in phase, in the quaternionic quantum mechanics only the
magnitudes |tL| and |tR| are equal. So, the measurement of a phase shift should be an indicator
of quaternionic effects and of space-dependent phase potentials. However, this conclusion
leads to the embarrassing question of why there was no phase change in the experiment
proposed by Peres and realized by Kaiser et al. To reconcile the theoretical predictions
with the experimental observations, Davies and McKellar reiterated the Klein conclusion and
suggested subjecting the neutron beam to different interactions in permuted order. In the final
chapter of the Adler book [15], we find an intriguing question. Do the Kaiser and colleagues
experiment, and the elaborations on it proposed by Klein, actually test for residual quaternionic
effects? According to the non-relativistic quaternionic scattering theory developed by Adler
[15], the answer is clearly no. Experiments to detect a phase shift are equivalent to detecting
time-reversal violation, which so far has not been detectable in neutron-optical experiments.

In this paper, after a brief introductory discussion about probability amplitudes, anti-self-
adjoint operators, stationary states and time-reversal invariance, we study the phenomenology
of quaternionic one-dimensional square potentials. The j–k part of these potentials is treated
as a perturbation of the complex case. We show that there are many possibilities in looking for
quaternionic deviations from the standard (complex) theory. Nevertheless, in particular cases,
we have to contend with quaternionic effects which minimize the deviations from complex
quantum mechanics. With this paper, we would like to close the debate on the role that
quaternionic potentials could play in quantum mechanics, but more realistically, we simply
contribute to the general discussion.

2. Amplitudes of probability

In this section, following Adler [15], we briefly discuss what kinds of number systems
can be used to appropriately define amplitudes of probability. Let us consider a generic
(complex, quaternionic, biquaternionic, octonionic, etc) Hilbert space V whose dimensionality
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is specified according to the nature of the physical system under consideration. In quantum
mechanics a physical state can be represented by an element in this space. With each pair of
elements of V, by a binary mapping (inner product) V × V → A, we associate an amplitude
of probability α ∈ A and define a real modulus function N(α) such that P = [N(α)]2, where
P is the probability of finding the system in a particular state. The first four assumptions on
N(α) are those usually imposed for a modulus function, that is

N(0) = 0 N(α) > 0 N(rα) = |r|N(α)(r ∈ R) N(α1 + α2) � N(α1) + N(α2).

A last assumption is obtained by imposing that in the absence of quantum interference,
probability amplitude superposition, αif = ∑

n αinαnf , should reduce to probability
superposition, Pif = ∑

n PinPnf . Consequently, for any two elements α1,2 of the algebra
A, we get

N(α1α2) = N(α1)N(α2).

This condition implies the division algebra property. The only division algebras over R are
the real, complex (C), quaternions (H) and octonions (O). A simple example of a nondivision
algebra is provided by complexified quaternions (or biquaternions).

As shown in [15], the associative law of multiplication (which fails for octonions) is
needed to give correct completeness relations and to guarantee that anti-Hermitian time
evolution operators leave invariant inner products. Thus, probability amplitude must be
defined in associative division algebras. Nevertheless, this does not mean that octonionic
or complexified quaternionic formulation of quantum mechanics is ruled out. In fact, it is
possible to work with octonionic or complexified quaternionic states and use complex or
quaternionic probability amplitudes. For example, the choice of a complex projection of
inner products allows formulations of relativistic equations and gauge theories by octonions
[24, 25] and complexified quaternions [26–32]. The important point to note here is the
possibility of introducing translation rules [33, 34] from which we can immediately obtain
octonionic or complexified quaternionic counterparts of standard (complex) theories. Our
point of view is that the use of the complex projection of inner products opens the door to
the use of nonassociative and nondivision algebras in physics and plays an important role
in investigating new gauge group in unification models [35, 36]. Further investigations,
i.e. octonionic and complexified quaternionic versions of physical theories based on the
use of quaternionic probability amplitudes, could be interesting when and if the validity
of quaternionic quantum mechanics based on quaternionic inner products is proved.

Throughout the paper, the states which represent quantum systems will be defined by
vectors in quaternionic Hilbert space, VH, linear under right multiplication [5] by quaternionic
scalar and the amplitudes of probability will be defined by the binary mapping VH ×VH → H.

3. Quaternionic Schrödinger equation

In the standard formulation of nonrelativistic quantum mechanics, the complex wavefunction
ϕ(r, t), describing a particle without spin subjected to the influence of a real potential V (r, t),
satisfies the Schrödinger equation

∂tϕ(r, t) = i

h̄

[
h̄2

2m
∇2 − V (r, t)

]
ϕ(r, t). (1)

In quaternionic quantum mechanics [15], the anti-self-adjoint operator

AV (r, t) = i

h̄

[
h̄2

2m
∇2 − V (r, t)

]
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can be generalized by introducing the complex potential W(r, t) = |W(r, t)| exp[iθ(r, t)],

AV,W (r, t) = i

h̄

[
h̄2

2m
∇2 − V (r, t)

]
+

j

h̄
W(r, t)

where the quaternionic imaginary units i, j and k satisfy the following associative but non-
commutative algebra:

i2 = j2 = k2 = ijk = −1.

The anti-Hermiticity is required to guarantee the time conservation of transition probabilities.
As a consequence of this generalization for the anti-self-adjoint Hamiltonian operator, the
quaternionic wavefunction �(r, t) satisfies the following equation:

∂t�(r, t) =
{

i

h̄

[
h̄2

2m
∇2 − V (r, t)

]
+

j

h̄
W(r, t)

}
�(r, t). (2)

Observe that �(r, t) has to be multiplied by i and j from the left-hand side because we are
considering quaternionic Hilbert space linear from the right multiplication by quaternionic
scalars. The presence of the imaginary units on the left-hand side and not from the right
also guarantees the anti-Hermiticity of AV,W . Exactly as in the case of the standard quantum
mechanics, we can define a current density

J = h̄

2m
[(∇�) i� − �i∇�]

and a probability density

ρ = ��.

Due to the non-commutativity nature of quaternions, the position of the imaginary unit i in the
current density is fundamental to obtaining the continuity equation

∂tρ + ∇ · J = 0. (3)

3.1. Stationary states

The quaternionic Schrödinger equation in the presence of time-independent potentials

[V (r), |W(r)|, θ(r)]

reads

∂t�(r, t) =
{

i

h̄

[
h̄2

2m
∇2 − V (r)

]
+

j

h̄
W(r)

}
�(r, t). (4)

The quaternionic stationary state wavefunction4

�(r, t) = �(r) exp
[
− i

h̄
Et

]
is the solution of equation (4) on the condition that �(r) is a solution of the time-independent
Schrödinger equation[

i
h̄2

2m
∇2 − iV (r) + jW(r)

]
�(r) + �(r) iE = 0. (5)

4 The choice of the imaginary unit i in the time exponential and as a factor in the Laplacian operator (4) guarantees
the standard results in the complex limit case. Observe that we are treating the quaternionic potentials as perturbation
effects on standard (complex) quantum mechanics.
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Equation (5) represents a right complex eigenvalue equation on the quaternionic field [22, 37],

AV,W
E (r)�(r) = −�(r) iE.

The allowed energies are determined by the right complex eigenvalues λ = −iE of the
quaternionic linear anti-self-adjoint operatorAV,W

E (r). The stationary state wavefunctions are
particular solutions of equation (4). More general solutions can be constructed by superposition
of such particular solutions. Summing over various allowed values of E, we get

�(r, t) =
∑
E

�(r) exp
[
− i

h̄
Et

]
qE (6)

where qE are constant quaternionic coefficients. The summation may imply an integration if
the energy spectrum of E is continuous.

3.2. Time-reversal invariance

From equation (4), we can immediately obtain the time-reversed Schrödinger equation

∂ t�T(r,−t) = −
{

i

h̄

[
h̄2

2m
∇2 − V (r)

]
+

j

h̄
W(r)

}
�T(r,−t). (7)

In complex quantum mechanics the ∗-conjugation yields a time-reversed version of the
original Schrödinger equation. In quaternionic quantum mechanics there does not exist a
universal time-reversal operator [15]. Only a restricted class of time-independent quaternionic
potentials, i.e.

W(r) = |W(r)| exp[iθ ]

is time-reversal invariant. For these potentials,

�T(r,−t) = u�(r, t)ū u = k exp[iθ ]. (8)

For complex wavefunctions, we recover the standard result �T(r,−t) = �∗(r, t).

3.3. One-dimensional square potentials

On solving the quaternionic Schrödinger equation, a great mathematical simplification results
from the assumption that the wavefunction and the potential energy depend only on the
x-coordinate,

i
h̄2

2m
�̈(x) + [ jW(x) − iV (x)]�(x) + �(x) iE = 0. (9)

We shall consider one-dimensional problems with a potential which is pieced together from a
number of constant portions, i.e. square potentials. In the potential region

[V ; |W |, θ ]

the solution of the second-order differential equation (9) is given by [23]

�(x) = uE;|W |,θ
{

exp
[
z
E;V,|W |
− x

]
c1 + exp

[
−z

E;V,|W |
− x

]
c2

}
+ vE;|W |,θ {exp

[
zE;V,|W |

+ x
]
c3 + exp

[−zE;V,|W |
+ x

]
c4
}

(10)

where c1,...,4 are complex coefficients determined by the boundary conditions,

z
E;V,|W |
± =

√
2m

h̄2 (V ±
√

E2 − |W |2) ∈ C(1, i)
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and

uE;|W |,θ =
(

1 − k
|W | exp[iθ ]

E +
√

E2 − |W |2

)
vE;|W |,θ =

(
j − i|W | exp[−iθ ]

E +
√

E2 − |W |2

)
∈ H.

In the free potential region, the solution reduces to

�(x) = exp
[

i
p

h̄
x
]
c1 + exp

[
−i

p

h̄
x
]
c2 + j

{
exp

[p

h̄
x
]
c3 + exp

[
−p

h̄
x
]
c4

}
where p = √

2mE. For scattering problems with a wavefunction incident from the left on
quaternionic potentials, we have

�−(x) = exp
[

i
p

h̄
x
]

+ r exp
[
−i

p

h̄
x
]

+ jr̃ exp
[p

h̄
x
]

(11)

where |r|2 is the standard probability of reflection and
∣∣r̃ exp

[
p

h̄
x
]∣∣2 represents an additional

evanescent reflection.

4. Time-reversal invariant (TRI) potential barrier

Let us consider the TRI potential

[V (x); |W(x)|, θ ].

In equation (9), the space-independent phase θ can be removed by taking the transformation

�(x) → exp

[
i
θ

2

]
�(x) exp

[
−i

θ

2

]
. (12)

Under this transformation

uE;|W |,θ → uE;|W | and vE;|W |,θ → vE;|W | exp[−iθ ].

Reflection and transmission probabilities do not change (actually the exponential exp[−iθ ] can
be absorbed in the complex coefficients c3,4). So, without loss of generality, we can discuss
the quaternionic Schrödinger equation in the presence of the square potential

[V (x); |W(x)|]
which has the following shape:

REGION I− REGION II− REGION III REGION II+ REGION I+

[0; 0] [V ; 0] [V ;W ] [V ; 0] [0; 0]

| | | |

−a −b +b +a

The particle is free for x < −a, where the solution is given by equation (11), and for x > a,
where the solution is

�+(x) = t exp
[
i
p

h̄
x
]

+ j t̃ exp
[
−p

h̄
x
]
. (13)

In equations (11) and (13), we have respectively omitted the complex exponential solutions
exp

[−p

h̄
x
]

and exp
[

p

h̄
x
]

because they are in conflict with the boundary condition that �(x)

remain finite as x → −∞ and x → +∞. In order to determine the complex amplitudes r, t, r̃

and t̃ , we match the wavefunction and its slope at the discontinuities of the potential (see the
appendix).
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By using the continuity equation, we can immediately obtain the standard relation between
the transmission and reflection coefficients, t and r. In fact, equation (3) implies that the current
density

J = p

2m
{[∂x�(x)]i�(x) − �(x) i∂x�(x)}

has the same value at all points x. In the free potential regions, the probability current densities
are given by J− = p

m
(1 − |r|2) and J+ = p

m
|t|2. Consequently, we find

|r|2 + |t|2 = 1. (14)

In figure 1(a), we plot the transmission probability |t|2 as a function of E (eV) for quaternionic
potentials of different widths and heights (we assume that the incident particle is an electron).
The presence of a quaternionic perturbation potential modifies the shape of the (complex)
transmission probability curve. We have a reduction of the transmission probability. The
presence of an inflection point is evident by increasing the width and the height of quaternionic
potentials. Figure 1(b) shows the transmission probability for the quaternionic potential

V + j|W | = (2.0 + j1.5) eV

and the complex comparative barrier [19]

Z =
√

V 2 + |W |2 = 2.5 eV.

The wave numbers for these potentials are

• E >
√

V 2 + |W |2:

zZ
− = i

√
2m

h̄2 (E −
√

V 2 + |W |2) ∈ iR+

z
V,W
− = i

√
2m

h̄2 (
√

E2 − |W |2 − V ) ∈ iR+

zV,W
+ =

√
2m

h̄2 (
√

E2 − |W |2 + V ) ∈ R+

• |W | < E <
√

V 2 + |W |2:

zZ
− =

√
2m

h̄2 (
√

V 2 + |W |2 − E) ∈ R+

z
V,W
± =

√
2m

h̄2 (V ±
√

E2 − |W |2) ∈ R+

• E < |W |:

zZ
− =

√
2m

h̄2 (
√

V 2 + |W |2 − E) ∈ R+

z
V,W
± =

√
2m

h̄2

√
V 2 + |W |2 − E2 exp[±iϕ] ∈ C

where ϕ = arctan [
√

(|W |2 − E2)/V 2]. For small quaternionic perturbations, the complex
comparative barrier Z represents a good approximation of the quaternionic potential V + j|W |.
In this case,

Z ∼ V

(
1 +

1

2

|W |2
V 2

)
and z

V,W
− ∼ zZ

−.
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Figure 1. Electron transmission probability, |t|2, as a function of E (eV) for quaternionic time-
reversal invariant potentials [40]. The full line indicates the complex quantum mechanics result
for the potential barrier of width a (Å) = 1.0 and height V (eV) = 2.0. The dashed lines (drawn
for a fixed width b (Å) = 1.0 and different values of the height |W | of the potential jW ) show the
quaternionic perturbation effects and the transmission probability for the complex (comparative)
barrier Z =

√
V 2 + |W |2.
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The anti-self-adjoint operators corresponding to the quaternionic potential V + j|W | and to
the complex barrier Z are respectively

AV,W
E = i

[
h̄2

2m
∇2 − V

]
+ jW(r, t) and AZ

E = i

[
h̄2

2m
∇2 −

√
V 2 + |W |2

]
.

By using these operators, we can write down two complex wave equations[
AV,W

E

]2
�(x) = −E2�(x) and

[AZ
E

]2
�(x) = −E2�(x). (15)

The complex operators[
AV,W

E

]2
= −

[
h̄2

2m
∇2 − V

]2

− |W |2 = −
(

h̄2

2m

)2

∇4 + 2V
h̄2

2m
∇2 − V 2 − |W |2

and[AZ
E

]2 = −
[

h̄2

2m
∇2 −

√
V 2 + |W |2

]2

= −
(

h̄2

2m

)2

∇4 + 2
√

V 2 + |W |2 h̄2

2m
∇2 −V 2 − |W |2

can now be easily compared. The difference is due to the factor which multiplies ∇2. Thus,
complex comparative barriers only represent a first approximation to quaternionic potentials.
In general, we have to consider the pure quaternionic potential, j|W |, as a perturbation effect
on the complex barrier V .

Deviations from (complex) quantum mechanics appear in the proximity of the complex
barrier V when a quaternionic perturbation is turned on. Actually, in quaternionic quantum
mechanics we find an additional evanescent probability of transmission, that is |t̃|2. This
probability as a function of E (eV) is drawn in figure 2 for different values of x.

To conclude the discussion of quaternionic one-dimensional time-invariant potentials, we
analyse the transmission probability |t|2 as a function of the width of complex and quaternionic
potentials. In figure 3, we plot the transmission probability for critical values of E. For
E >

√
V 2 + |W |2, the minimum value of the transmission probability oscillation decreases

when the quaternionic perturbation increases.

5. Time-reversal violating (TRV) potential barrier

Let us modify the previous potential barrier by introducing a time-reversal violating space-
dependent phase θ(x). We shall consider, for region III, the following cases:

REGION III0 REGION III0 REGION IIIθ REGION IIIθ

[V ; |W |, 0] [V ; |W |, 0] [V ; |W |, θ ] [V ; |W |, θ ]

REGION III0 REGION IIIθ REGION IIIθ REGION III0

[V ; |W |, 0] [V ; |W |, θ ] [V ; |W |, θ ] [V ; |W |, 0]

REGION IIIθ REGION IIIθ REGION III0 REGION III0

[V ; |W |, θ ] [V ; |W |, θ ] [V ; |W |, 0] [V ; |W |, 0]

| | | | |

−b −c 0 +c +b

As remarked in the introduction, quaternionic deviations from complex quantum mechanics
could be observed by considering left and right transmissions through the same quaternionic
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Figure 2. Additional probability of electron transmission, |t̃|2 exp[−2px/h̄], and reflection,
|r̃|2 exp[2px/h̄], as a function of E (eV) for the quaternionic time-reversal invariant potential of
width a = b = 1.0 Å and height V = |W | = 2.0 eV [40]. The curves show the additional
probability of transmission and reflection for different values of x.
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Figure 3. Electron transmission probability, |t|2, as a function of a (Å) for quaternionic time-
reversal invariant potentials [40]. The curves (drawn for different values of E) show the transmission
probability of the complex quantum mechanics potential barrier of height V (eV) = 2.0 and of
potentials of the same complex height and quaternionic height |W | (eV) = 1.0 and 1.5.
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Figure 4. Electron transmission probability, |t|2, and absolute value of the transmission coefficient
argument, |Arg(t)|, as a function of the time-violating phase θ [π ] for potentials of height
V = 2|W | = 2.0 eV and width a = 2b = 4c = 1.0 Å [40]. The curves show that only asymmetric
(time-violating) quaternionic potentials could distinguish between left and right transmissions.
The value of the energy is fixed at E = 3.0 eV.
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Table 1. Transmission probability, |t|2, and transmission coefficient, t, for different values of the
potential phase, θ .

[E; V, |W |] θ |t|2 t

[3; 2, 0] [0, 0; 0, 0] 0.925 842 0.915 930 − i 0.294 811

[3; 2, 1] [ 0, 0; 0, 0] 0.923 710 0.913 674 − i 0.298 177[
0, 0; π

6 , π
6

]
0.923 843 0.913 869 − i 0.297 802

[3; 2, 1]
[
0, π

6 ; π
6 , 0

]
0.923 850 0.913 822 − i 0.297 959[

π
6 , π

6 ; 0, 0
]

0.923 843 0.913 757 − i 0.298 147[
0, 0; π

4 , π
4

]
0.924 000 0.914 057 − i 0.297 490

[3; 2, 1]
[
0, π

4 ; π
4 , 0

]
0.924 016 0.913 998 − i 0.297 699[

π
4 , π

4 ; 0, 0
]

0.924 000 0.913 898 − i 0.297 977[
0, 0; π

3 , π
3

]
0.924 205 0.914 289 − i 0.297 122

[3; 2, 1]
[
0, π

3 ; π
3 , 0

]
0.924 232 0.914 226 − i 0.297 360[

π
3 , π

3 ; 0, 0
]

0.924 205 0.914 095 − i 0.297 718[
0, 0; π

2 , π
2

]
0.924 699 0.914 820 − i 0.296 317

[3; 2, 1]
[
0, π

2 ; π
2 , 0

]
0.924 753 0.914 776 − i 0.296 542[

π
2 , π

2 ; 0, 0
]

0.924 699 0.914 596 − i 0.297 006

[0, 0; π, π ] 0.925 681 0.915 736 − i 0.295 142
[3; 2, 1] [0, π ; π, 0] 0.925 789 0.915 873 − i 0.294 900

[π, π ; 0, 0] 0.925 681 0.915 736 − i 0.295 142

E = 3 eV; V = 2|W | = 2 eV; a = 2b = 4c = 1 Å.

potential barrier. The left transmission (x < −a) for the quaternionic potential of height |W |
and phase

θ(x) =
{

0 −b < x < 0

θ 0 < x < b
(16)

is obviously equivalent to the right transmission (x > a) for the quaternionic potential of
height |W | and phase

θ(x) =
{

θ −b < x < 0

0 0 < x < b
. (17)

By using transformation (12), we can replace the phase (17) by

θ(x) =
{

0 −b < x < 0

−θ 0 < x < b
. (18)

Thus, the plot of the transmission coefficient as a function of θ [π] is a valid indicator of
possible deviations from complex quantum mechanics. Symmetric curves (around the point
θ [π] = 1) will imply no difference between left and right transmissions through the same
quaternionic barrier. In figure 4, we draw the transmission probability, |t|2, and the absolute
value of the transmission coefficient argument, |Arg(t)|, as a function of the phase θ [π].
Qualitative deviations for complex quantum mechanics appear for asymmetric time-violating
potentials. It is also interesting to note that by increasing the phase (θ [π] → 1), quaternionic
perturbation effects are minimized. For the convenience of the reader we explicitly give, see
table 1, the transmission probability |t|2 and the transmission coefficient t for different values
of the potential phase θ and the electron energy E [38].
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6. Conclusions

Difficulties in quaternionic analysis and algebra have often created (and sometimes justified)
a feeling of distrust in quaternionic formulations of physical theories. Recent significant
progress in quaternionic and Clifford calculus and the consequent improvement of the
mathematical structures involved in the quaternionic quantum mechanics could result in a
rapid development of this subject.

The usefulness of quaternions (and, more in general, Clifford algebras) to unify algebraic
and geometric aspects in discussing special relativity, Maxwell and Dirac equations is
universally recognized. Nevertheless, notwithstanding the substantial literature analysing
quaternionic physical theories, a strong motivation forcing the use of quaternions instead
of complex numbers is lacking. The experimental proposals of Peres [16], the theoretical
analysis of Davies and McKellar [19, 21] and the detailed and systematic development of
quaternionic quantum mechanics in Adler’s book [15] surely represent a milestone in looking
for quaternionic deviations from complex quantum mechanics.

In this paper, we have presented a complete phenomenology of the quaternionic potential
barrier by discussing the time-invariant and time-violating cases. Interesting features of
quaternionic perturbation effects emerge in the transmission and reflection coefficients.
Various graphs show how the quantum measurement theory may be affected by changing
from complex to quaternionic systems. The present work represents a preliminary step
towards a significant advance in understanding quaternionic potentials and in looking for their
experimental evidence. An interesting discussion about the quaternionic violations of the
algebraic relationship between the six coherent cross sections of any three scatterers, taken
singly and pairwise, is found in [39].

Quaternionic time-violating potentials and quaternionic perturbations (which minimize
the deviations from complex quantum mechanics) could play an important role in the CP
violating physics. A theoretical discussion based on the wave packet formalism will be
necessary to analyse experimental tests based on kaon regeneration [16, 39]. For asymmetric
potentials non-null signals of quaternionic (time violating) effects should be observed. We
will try to develop the wave packet treatment in a later paper.
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Appendix. Matching conditions

A.1. TRI potential barrier

The matching conditions for the TRI potential barrier imply




1
r

r̃

r̃


 = S[a, b; E; V, |W |]




t

t

t̃

t̃


 (19)
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where

S[a, b; E; V, |W |] = D−A−︸ ︷︷ ︸
S[I−]

MV DV
b−a[MV ]−1︸ ︷︷ ︸
S[II]

Q|W |MV,|W |DV,|W |
−2b [MV,|W |]−1[Q|W |]−1︸ ︷︷ ︸

S[III]

× MV DV
b−a[MV ]−1︸ ︷︷ ︸
S[II]

A+D+︸ ︷︷ ︸
S[I+]

and

D− = diag
{

exp
[
i
p

h̄
a
]
, exp

[
−i

p

h̄
a
]
, exp

[p

h̄
a
]
, exp

[p

h̄
a
]}

A− = 1

2

(
1 −i h̄

p

1 i h̄
p

)
⊕

(
1 0
0 h̄

p

)

MV,|W | =
(

1 1

z
E;V,|W |
− −z

E;V,|W |
−

)
⊕

(
1 1

z
E;V,|W |
+ −z

E;V,|W |
+

)
MV = MV,|W |→0

Q|W |,θ =
(

1 [vE;|W |,θ ]C

[−juE;|W |,θ ]C 1

)
⊗

(
1 0
0 1

)
Q|W | = Q|W |,θ→0

DV,|W |
η = diag

{
exp

[
z
E;V,|W |
− η

]
, exp

[
−z

E;V,|W |
− η

]
, exp

[
zE;V,|W |

+ η
]
, exp

[−zE;V,|W |
+ η

]}
DV

η = DV,|W |→0
η

A+ =
(

1 0
0 ip

n

)
⊗

(
1 0
0 −p

n

)
D+ = diag

{
exp

[
i
p

h̄
a
]
, exp

[
i
p

h̄
a
]
, exp

[
−p

h̄
a
]
, exp

[
−p

h̄
a
]}

.

The complex limit is obtained by setting b = 0. In this case (S[III] = 1) S[a, b; E; V,W ]
reduces to

S[a; E; V ] = D−A−MV DV
−2a[MV ]−1A+D+.

By matrix algebra, we easily calculate the coefficients for reflection and transmission

t = exp
[
−2i

p

h̄
a
] {

cosh[2z
E;V
− a] +

i

2
χ− sinh[2z

E;V
− a]

}−1

r = − i

2
χ+ sinh[2z

E;V
− a]t

t̃ = 0

r̃ = 0

where χ± = h̄
p
z
E;V
− ± (

h̄
p
z
E;V
−

)−1
.

A.2. TRV potential barrier

The matrix S[a, b, c; E; V, |W |, θ ] is now expressed in terms of

S[III] =




S[III0 0 θ θ ] : S[0,−b] × S[θ,−b]

S[III0 θ θ 0] : S[0, c − b] × S[θ,−2c] × S[0, c − b]

S[IIIθ θ 0 0] : S[θ,−b] × S[0,−b]
where

S[θ, η] = Q|W |,θMV,|W |DV,|W |
η

[
MV,|W |]−1 [

Q|W |,θ]−1
.
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